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Abstract

Risk-averse multistage stochastic programs appear in multiple areas and are challenging to solve. Stochastic
Dual Dynamic Programming (SDDP) is a well-known tool to address such problems under time-independence
assumptions. We show how to derive a dual formulation for these problems and apply an SDDP algorithm,
leading to converging and deterministic upper bounds for risk-averse problems.
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1. Introduction

Multistage stochastic programming is a power-
ful framework with multiple applications [7], e.g.
in the finance, energy and supply chain sectors. If
the uncertainty is finitely supported, those prob-
lems can be seen as large-scale deterministic prob-
lems. When there is more than 4 or 5 stages,
the deterministic equivalent is usually too large
to be solved directly. One of the most success-
ful paradigms in this setting consists in leverag-
ing time-independance assumptions to derive Bell-
man equations [4]. The Stochastic Dual Dynamic
Programming (SDDP) algorithm, and its numer-
ous variants ([10, 3, 17, 1]), consists in using those
equations to derive approximations of the cost-to-go
functions. It has been successfully used on a num-
ber of real-world problems, especially in the field of
energy.
While the classical formulation of a multistage

program is risk-neutral, meaning that we minimize
an expected cost, a large part of the recent littera-
ture sparked by [14, 11, 16] has been devoted to ef-
ficiently introduce risk aversion in this framework,
in particular inside the SDDP algorithm. Coher-
ent risk measures [2] have become a usual tool to
represent risk aversion in stochastic optimization
problems. In multistage stochastic programming,
minimizing a risk measure of the sum of costs leads
to time-inconsistency. The easiest way to come
up with a time-consistent risk-averse problem is to
use composed Markovian risk measures [13], which,

roughly speaking, means replacing the expectation
by a risk measure inside the dynamic programming
equation.

More precisely, let (Ω,F ,P) be a probability
space, and {ωt}t∈[T ] be a sequence of finitely sup-
ported, independent random variables (by conven-
tion, boldscript refers to random variables, normal
script to an element of their support, and equalities
between random variables hold almost surely.) We
consider the following risk-averse multistage linear
program (RA-MSLP)

min
xt,yt

ρ1

(
c⊤1 y1 + ρ2|ω1

(
· · ·+ ρT |ω[T−1]

(c⊤T yT )
))
(1a)

s.t. Atxt +Btxt−1 + T tyt = dt ∀t ∈ [T ] (1b)

0 ≤ xt ≤ x̄t, 0 ≤ yt ≤ ȳt ∀t ∈ [T ] (1c)

xt,yt ⪯ ω[t] ∀t ∈ [T ] (1d)

where ρt|ω[t]
is a coherent risk measure conditional

on the past noises ω[t] := {ω1, . . . ,ωt}, all equal-
ities hold almost surely, and constraint (1d) is
the non-anticipativity constraint, stating that deci-
sions xt,yt are measurable with respect to ω[t] :=
{ω1, . . . ,ωt}. Convexity of ρt is crucial both for the
SDDP algorithm and the duality theory developed
here. Moreover, in this paper we restrict ourselves
to polyhedral risk measures (defined in Section 2.2)
to avoid dealing with technical constraint qualifica-
tion considerations which would distract the reader.
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Finally, note that, by construction, the nested mul-
tistage risk measure used in Problem (1) is time-
consistent.
Since {ωt}t∈[T ] is a sequence of independent ran-

dom variables, Dynamic Programming leads to the
following recursion:

VT+1(xT ) = 0, (2)

Vt(x) = min
xt,yt

ρt
[
c⊤t yt + Vt+1(xt)

]
s.t. Atxt +Btx+ T tyt = dt

0 ≤ xt ≤ x̄t, 0 ≤ yt ≤ ȳt

(3)

where the value of Problem (1) is given by V1(x0).
The classical SDDP algorithm builds outer ap-

proximations of the cost-to-go functions Vt, lead-
ing to exact lower bounds on the problem. In a
risk-neutral framework, upper bounds can be esti-
mated via Monte Carlo sampling. Unfortunately, it
is unclear how to extend such statistical methods
to the risk-averse setting [16]. Instead of statisti-
cal upper bounds, one can use exact upper bounds:
Through backward recursion ([11]); by maintain-
ing upper and lower bounds for all value functions
([3, 6]); or using Fenchel duality ([9, 8]). Up to now,
the first approach has not been used to compute im-
proving upper bounds along SDDP iterations, while
the second approach relies on a problem-child node
selection method. Finally, the last approach was
developed only in a risk-neutral setting. The aim
of this work is to adapt the latter approach to a risk-
averse setting. By dualizing the extensive formula-
tion of the risk-averse MLSP problem, and recog-
nizing a time-decomposition, we obtain a Bellman
recursion on which SDDP can be applied, yielding
converging exact upper bounds.

Contributions. In this paper we i) derive a dual
formulation of RA-MLSP with polyhedral risk mea-
sure; ii) show that it is time-decomposable and solv-
able through SDDP, yielding exact upper bounds
of the original problem; iii) link the value function
of the dual formulation with the co-perspective of
the primal value function; and iv) illustrate the ap-
proach with numerical results.

2. Time decomposition of the dual of a risk
averse MSLP

2.1. Risk-averse duals with AV@R

We start by showing how to build the dual prob-
lem in a very specific setting: for a single step of the

recursion, with no upper bounds on xt and yt, and
when the risk measure ρ is a convex combination of
the mean and the α-AV@R, given by, for α ∈ (0, 1)
and β ∈ [0, 1],

ρ [θ] := βE[θ] + (1− β)AV@Rα[θ] . (4)

This risk measure assumes an underlying probabil-
ity for the scenarios, with respect to which one cal-
culates the expectation and the AV@R. The risk
measures we employ in the example in section 4.2
will be of this class.

We rewrite equation (3) using the Rockafellar-
Uryasev representation of AV@R, with θ as epi-
graphical variables for the scenario costs. For sim-
plicity, we represent a random variable as a vec-
tor in RJ , denoted with bold letters such as x =
(x1, . . . xJ), and the expectation E[x] is the sum∑
pjxj . So, the value of Vt(xt−1) is given by:

inf
x,y;q,θ,u

βE[θ] + (1− β)
[
q + 1

αE[u]
]

s.t. q + uj ≥ θj ∀j ∈ [J ]

θj ≥ c⊤j yj + Vt(xj) ∀j ∈ [J ]

Ajxj +Bjxt−1 + Tjyj = dj ∀j ∈ [J ]

xj , yj , uj ≥ 0 ∀j ∈ [J ]
(5)

We define dual multipliers for every constraint: in
order, δ, γ, λ, µ, ν, and η. With the expectation
inner product, this yields the Lagrangian:

(1− β)q + βE[θ] + (1− β)/α · E[u]
E[γ(c⊤y + V (x)− θ) + δ(θ − q − u)]

+ E[λ⊤(Ax+Bxt−1 + Ty − d)]

− E[µ⊤x+ ν⊤y + ηu]

Eliminating the multipliers ν and η, we obtain the
dual problem

sup
λ,γ,δ,µ

E
[
λ⊤(Bxt−1 − d) +

inf
x

[
(A⊤λ− µ)⊤x+ γVt(x)

] ]
s.t. E[δ] = (1− β)

0 ≤ δj ≤ 1−β
α ∀j ∈ [J ]

γj = β + δj ∀j ∈ [J ]
γjcj + T⊤

j λj ≥ 0 ∀j ∈ [J ]
µj ≥ 0 ∀j ∈ [J ]

(6)

Observe that the variable γ represents the
“change-of-measure” implied by the mean-AV@R
combination [15]. Indeed, γ is at least β ≤ 1, and
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some events will have an increased contribution, up
to 1−β

α , so that E[γ] = 1.

2.2. Polyhedral risk measures and duality

To extend the previous approach to more general
risk measures, we adopt a distributionally robust
point of view. We consider a polyhedral risk mea-
sure ρ, that is, a coherent risk measure of the form

ρ : t 7→ sup
Q∈Q

EQ[t] = max
k∈[K]

{EQk [t]}, (7)

where Q = conv({Qk}k∈[K]). Polyhedral risk mea-
sures can be either chosen as interpretable risk-
measures (e.g. AV@R in a finite setting) or as the
worst case among a set of probabilities estimated by
various experts. Since we don’t assume a reference
probability, we resort to describing the extremal
risk measures, which may be very numerous. This
also changes the interpretation of the dual variables
γ: now they correspond to supporting probabilities,
instead of a change-of-measure.
We denote the elements of the support of ω

by ω1, . . . , ωJ , and let qkj := Qk[ω = ωj ]. Now,
Vt(xt−1) is given by:

inf
x,y;z,θ

z (8)

s.t. z ≥
∑
j∈[J]

qkj θj ∀k [ϕk]

θj ≥ c⊤j yj + Vt+1(xj) ∀j [γj ]

Ajxj +Bjxt−1 + Tjyj = dj ∀j [λj ]

0 ≤ xj ≤ x̄t ∀j [µj , ζj ]
0 ≤ yj ≤ ȳt ∀j [νj , ξj ]

Proceeding analogously to the AV@R case above,
we introduce dual multipliers as indicated in the
brackets, and obtain the following dual problem

sup
ϕk,γj ,λj ,
µj ,ζj ,ξj

∑
j∈[J]

[
λ⊤j (Bjxt−1 − dj)− x̄tζj − ȳtξj (9)

+ inf
xj

(A⊤
j λj − µj + ζj)

⊤xj + γjVt+1(xj)
]

s.t.
∑
k

ϕk = 1, ϕk ≥ 0,∑
k

ϕkq
k
j = γj ≥ 0 ∀j

γjcj + T⊤
j λj + ξj ≥ 0 ∀j

µj , ζj , ξj ≥ 0 ∀j.

The constraints on ϕk are equivalent to describ-
ing the vector of γj ’s as a convex combination
of the extreme probabilities Qk. Therefore, one
can rewrite problem (9) to include the constraint
{γj}j∈[J] ∈ Q instead of the first two lines. This
shows that the variables γj correspond to one sup-
porting probability of the risk measure ρ. In partic-
ular, if a given scenario is effective, in the sense of
[12], then there exists an optimal γ which charges
this scenario.

Moreover, the last two constraints here corre-
spond exactly to the last two in problem (6), which
emphasizes the similarity between (9) and (6).

2.3. Multistage risk averse problem duality

We now extend the duality to the full multi-
stage problem. In the stagewise independent set-
ting, we let Ωt be the set of all possible realiza-
tions of ωt, and the risk measure ρt is defined by
ρt = supQ∈Qt

EQ[·], for a polyhedral subset Qt of
probability measures on Ωt. The tree T describ-
ing the stochastic process is such that each node
n of depth t is associated with a possible value of
ω[t] = (ω1, . . .ωt). For any node n, the set of its
children is denoted by Cn, and L is the set of leaves
of T .

In the spirit of the previous section, we introduce
variables zn to stand for the risk-adjusted value of
our problem starting from node n, and θm repre-
sents the cost-to-go following the branch of node
m ∈ Cn. To reduce notational burden, we assume
that, for all t, ρt = ρ. Then, the risk averse prob-
lem (1), with value Vn0

(x̃n0
), can be written as the

following linear program:

min z0 (10)

s.t.
∑
m∈Cn

qkmθm ≤ zn ∀n,∀k ∈ [K] [Φkn]

c⊤mym + zm ≤ θm ∀m ∈ T \{n0} [γm]

Amxm +Bmx̃n

+ Tmym = dm ∀n, ∀m ∈ Cn [λm]

zℓ = 0 ∀ℓ ∈ L [ηℓ]

xm = x̃m ∀m ∈ T \{n0} [πm]

0 ≤ x̃m ≤ x̄m ∀m ∈ T \{n0} [µm, ζm]

0 ≤ ym ≤ ȳm ∀m ∈ T \{n0} [µm, ξm]

where, when unspecified, ∀n stands for ∀n ∈ T \L,
x̃n0

is a parameter and not a variable, and we add
the equalities xm = x̃m to highlight the time dy-
namics.
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Defining γn0 = 1, the linear programming dual
of problem (10) is

sup
Φ,γ,π,λ

π⊤
n0
x̃n0
−
∑
m

λ⊤mdm + x̄⊤mζm + ȳ⊤mξm

s.t.
∑
k∈[K]

Φkn = γn ∀n [zn]

∑
k∈[K]

Φknq
k
m = γm ≥ 0 ∀n, ∀m ∈ Cn [θm]

πn0 =
∑

m∈Cn0

B⊤
mλm

πn ≤ ζn +
∑
m∈Cn

B⊤
mλm ∀n ∈ T \{n0} [x̃m]

πm +A⊤
mλm = 0 ∀m [xm]

γmcm + T⊤
mλm + ξm ≥ 0 ∀m [ym]

Φkn ≥ 0 ∀n, ∀k ∈ [K]

ζm ≥ 0, ξm ≥ 0 ∀m

where we keep ∀n to imply n ∈ T \L as above, and
unspecified ∀m,

∑
m range over m ∈ T \{n0}.

Note that Φkn can be seen as barycentric coordi-
nates of the extreme points of Q. Thus, the first
two constraints can be more compactly written as
(γm)m∈Cn

∈ γnQ.

By backward recursion, this problem can be
solved through the following recursive equations,
where, for all leaves ℓ ∈ L, Dℓ(πℓ, γℓ) =
−x̄⊤ℓ max{πℓ, 0}, and for all nodes n ∈ T \L,
Dn(πn, γn) is given as the value of

sup
πm,γm,λm
ζn,ξm≥0

1{n=n0}π
⊤
n0
x̃n0 − x̄⊤n ζn+ (11)

∑
m∈Cn

−λ⊤mdm − ȳ⊤mξm +Dm(πm, γm)

s.t. (γm)m∈Cn
∈ γnQ

ζn +
∑
m∈Cn

B⊤
mλm ≥ πn

πm +A⊤
mλm = 0, ∀m ∈ Cn

γmcm + T⊤
mλm + ξm ≥ 0, ∀m ∈ Cn

By the independence assumption, a backward in-
duction shows that Dn = Dn′ for all nodes n and
n′ of the same depth. Thus, defining DT (πT , γT ) =
−x̄⊤T max{πT , 0}, we obtain the following recursion

for the dual value functions:

Dt(πt, γt) = (12)

sup
ζ,γj ,

λj ,πj ,ξj

− x̄⊤t ζ +
∑
j∈[Jt]

[
− d⊤j λj − ȳ⊤t+1ξj

+Dt+1(πj , γj)
]

s.t. (γj)j∈[Jt] ∈ γtQ

ζ +
∑
j∈[Jt]

B⊤
j λj ≥ πt

πj +A⊤
j λj = 0 ∀j ∈ [Jt]

γjcj + T⊤
j λj + ξj ≥ 0 ∀j ∈ [Jt]

ξj ≥ 0, ζ ≥ 0

This decomposition satisfies the RCR conditions.
Indeed, for every πt and every γt ≥ 0, any γ ∈ γtQ
and λ = 0 are admissible, using slack variable ζ as
needed. Then, πj are given by the πj + A⊤

j λj = 0,
and the remaining constraints can be adjusted using
ξj .

Remark 1. Relatively complete recourse in a dual
formulation is not guaranteed (see for example [8]).
In our setting, the explicit upper bounds of (1c)
ensure RCR. The existence of such upper bounds
is equivalent to the existence of exact penalization
coefficients in the dual, which is the tool used in [8]
to deal with this difficulty. Alternatively, we could
incorporate feasibility cuts in the algorithm.

2.4. Bounding the dual state

With our boundedness assumption, we have rel-
atively complete recourse in the dual. To prove
convergence, we still need to ensure that the dual
state remains bounded.

By assumption, we know that there exists an op-
timal primal solution. Further, by linear program-
ming duality, we know that there exists an opti-
mal dual solution. The marginal interpretation of
the Lagrange multiplier π (see Problem (10)) states
that, for each node, the optimal dual πn is a sub-
gradient of the primal value function for γn = 1.
In particular, πn/γn can be bounded by the Lips-
chitz constant of the primal value function Vn. In
the independent setting, assuming that Vt is Lt-
Lipschitz continuous on its domain, we can add
the constraint |πj | ≤ γjLt+1 to (12) for each j,
without changing its value. This method is similar
to the compactification process through Lipschitz-
regularization used in [9].
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Therefore, we use the compactified recursion pre-
sented in (13). Since it has RCR and bounded

states, the SDDP algorithm on this recursion con-
verges. This is illustrated in section 4.

Dt(πt, γt) = sup
ζ,γj ,λj ,πj ,ξj

−x̄⊤t ζ +
∑
j∈[J]

−d⊤j λj − ȳ⊤t+1ξj +Dt+1(πj , γj)

s.t. γ ∈ γtQ
ζ +

∑
j B

⊤
j λj ≥ πt

πj +A⊤
j λj = 0 ∀j ∈ [Jt]

γjcj + T⊤
j λj + ξj ≥ 0 ∀j ∈ [Jt]

|πj | ≤ γjLt+1 ∀j ∈ [Jt]
ζ ≥ 0, ξj ≥ 0

(13)

3. Dual risk averse Bellman operator

We introduce convex analysis tools that shed new
light on the link between the primal and dual value
functions given in Section 2.

3.1. Homogeneous Fenchel duality

Let f : Rn → (−∞,∞] be a proper lower semi-
continuous convex function. Recall (see [5] for more
details) that the perspective function of f , denoted
f̃ , is a convex, lower-semicontinuous function of
Rn+1, such that f̃(x, γ) = γf(x/γ) for any posi-
tive number γ.

Recall that the Fenchel conjugate of f is

f⋆ : Rn → R : ψ 7→ sup
x∈Rn

ψ⊤x− f(x). (14)

Inspired by the recurrences in (6) and (9), we
introduce the coperspective function:

Definition 2. Let f : Rn → R. The coperspective
of f is the perspective of the Fenchel conjugate, that
is (f⋆)∼, that we denote f⊠. In particular, for ψ ∈
Rn and γ ∈ R++, we have

f⊠(ψ, γ) := sup
x∈Rn

ψ⊤x− γf(x). (15)

Remark 3. The coperspective is jointly convex in
(ψ, γ), lower semicontinuous, and a positively ho-
mogeneous function of degree 1: for all t > 0,

f⊠(t · ψ, t · γ) = t · f⊠(ψ, γ).

Remark 4. Cuts for a convex function and its
perspective are essentially equivalent. If f(x) ≥

f(x0) + g⊤(x− x0) = θ + g⊤x, then

f̃(x, γ) = γ · f(x/γ) ≥ γf(x0) + γg⊤(x/γ − x0)
≥ γf(x0) + g⊤(x− γ · x0)
≥ θ · γ + g⊤x

Similarly, if f̃(x, γ) ≥ θ · γ + g⊤x+ β, then f(x) ≥
g⊤x+ θ + β. Note that if the cut for f̃ is exact we
can assume β = 0.

3.2. Duality and conjugate value functions

Consider a polyhedral risk measure ρ and the
associated risk-averse Bellman operator B that, to
any cost-to-go function V and initial state xt−1 as-
sociates the value of Problem (8).

The coperspective of B(V ) can be calculated us-
ing (9). Leveraging positive homogeneity, for ψ0 ∈
Rn and γ0 > 0, we get that B(V )⊠(ψ0, γ0) is given
by

sup
x0

ψ⊤
0 x0 (16)

+ inf
γ,λ,µ
ζ,ξ

∑
j∈[J]

λ⊤j (dj −Bjx0) + ξ⊤j ȳt+1

+ ζ⊤j x̄t+1 + V ⊠(µj −A⊤
j λj − ζj , γj)

s.t. γ ∈ γ0Q
γjcj + ξj + T⊤

j λj ≥ 0 ∀j
µj , ζj , ξj ≥ 0 ∀j.

Note that, if V is polyhedral, so are its Fenchel
dual and its perspective. Thus, by linear program-
ming duality, we can interchange sup and inf to
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obtain

[B(V )]⊠(ψ0, γ0) = (17)

inf
γ,λ
µ,ζ,ξ

∑
j∈[J]

λ⊤j dj + ξ⊤j ȳt+1 + ζ⊤j x̄t+1 + V ⊠(ψj , γj)

s.t.
∑
j B

⊤
j λj = ψ0

γ ∈ γ0Q
γjcj + ξj + T⊤

j λj ≥ 0 ∀j
ψj = µj −A⊤

j λj − ζj ∀j.

This equation defines a risk-neutral LBO B⊠ that
takes a homogeneous recourse function V ⊠ and re-
turns another homogeneous convex function of the
same dimension. We call this operator the projec-
tive dual Bellman operator associated to B.

Comparing (12) and (17), we notice the decom-
position is not done at the same time-step for all
variables: in the first one, ζ is a single variable, re-
laxing the incoming dual state constraint; whereas
in the second, it relaxes the outgoing dual state
constraint. Substituting πj = ψj + ζj − µj , we
obtain the following proposition, linking the cop-
erspectives of the primal value functions with the
value functions of the dual problem.

Proposition 5. For t ∈ [T ], if the dual value func-
tion Dt is defined by (12), and Vt is the primal value
function defined by (3) then

Dt(πt, γt) = − inf
ζt+ψt≥πt
ζt≥0

x̄t
⊤ζt + V ⊠

t (ψt, γt).

In particular, Dt is a concave, positively homoge-
neous, one-sided Lipschitz regularization of V ⊠

t .
Further, the value of primal Problem (1) is

supπ0
π⊤
0 x0 +D0(π0, 1).

This proposition paves the way to a dual SDDP
algorithm. Indeed, it was shown in [9] that SDDP
can be applied to any sequence of functions linked
through linear Bellman operators (LBO) like B⊠.

4. Examples

In this section, we provide an algorithm, in the
lineage of SDDP, for the risk-averse dual problem
given by the recursion (13). Then, we close with
one numerical example from a real-world problem.
A more comprehensive discussion on the algorithm,
including implementation details, can be found at
the companion. There, one will also find further
results on the application of our algorithm.

4.1. A dual risk-averse algorithm

The recursion of (perspective) value functions Dt

given by (13) can be solved by recursively con-
structing piecewise linear (upper) approximations,
which we callDt. As usual, one needs to ensure that
the domain of the state variables πt and γt remains
bounded. Since all γt remain in [0, 1], we only need
bounds for πt, which we assume are given by the
user as the Lipschitz constants Lt for the primal
value functions Vt. In our experiments, the Lips-
chitz constant estimation was not critical: Increas-
ing Lt by a factor 10 or 100 had a negligible impact
after 50 iterations, as can be seen in section C of the
companion. Moreover, one needs a starting upper
bound for Dt. These can be obtained, for example,
choosing πt = 0 and γt = 1, and constructing cuts
from t = T − 1 back to t = t0.

The first stage problem, corresponding to t = t0,
is slightly different. It is obtained as the fusion
of the “zero-th stage” containing πn0 as a decision
variable, and the first stage in (13). Furthermore,
since xn0

is fixed, there’s no corresponding slack
variables µn0

and ζn0
, so it must satisfy∑

j∈[J0]

B⊤
j λj = π0. (18)

With this, we can now present how one can per-
form Bellman iterations on the recursion defined
by (13) to obtain convergence. We highlight the
following differences with the primal SDDP:

• Computing Dt(π, γ) cannot be decomposed by
realization of ωt due to the coupling constraint
ζ +

∑
j∈[Jt]

B⊤
j λj ≥ πt. In particular, the for-

ward pass is as demanding as the backward
pass, and yields cuts. Furthermore, we have
one next-state variable per possible realization
of ωt, which means that, when adding a sin-
gle cut to the approximation of Dt+1, we are
adding Jt constraints.

• In the forward step, we choose the realization
j according to a (smoothed) “importance sam-
pling” procedure, with weight γj + ε.

• By homogeneity, we normalize the state vari-
ables (πj , γj) that will be used in the next step
of the forward pass to have γt+1 = 1, unless
we are in a branch where γt = 0. This has had
a positive impact in the numerical stability of
the algorithm.
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• Finally, by remark 4, we ensure that, for every
cut, its parameter β is always zero.

Algorithm 1: Dual Risk-Averse SDDP

Data: upper bounds D0
t ≥ Dt and

bounds Lt for |πt|
Result: upper bound on the value of (13)

for k = 0 to N do
Solve the first stage problem to obtain
π0, and set γ0 = 1
if k == N then Return upper bound

for t = 0 to T − 1 do // forward pass

Solve problem (13) with Dk
t+1 instead

of Dt+1

Compute a cut for Dt using the
optimal multipliers for πt and γt
Choose a branch ȷ̂ according to
probabilities γj + ε
if γȷ̂ > 0 then

Set πt+1 ← πȷ̂/γȷ̂, and γt+1 ← 1
else

Set πt+1 ← πȷ̂, and γt+1 ← 0

Naturally, one can couple this algorithm with
(say) SDDP running on the primal. This keeps
track of both upper and lower bounds, therefore
allowing to stop based on a prescribed tolerance,
instead of just a maximum number of iterations as
described above.
Let us close this section with two remarks. First,

even if this algorithm uses only forward passes, one
could use backward passes for computing cuts, as
in the classical SDDP algorithm. This would re-
quire solving approximately twice the number of
optimization problems, but would include in the
backward pass the updated value function, which
could potentially speed up the convergence of the
algorithm. Furthermore, this algorithm is eas-
ily amenable to standard cut-selection techniques,
which can be useful to reduce the computational
burden of each iteration.

4.2. Numerical experiments

We present here a numerical example. Further
details and other results are given in the companion,
and the implementation in julia, along with other
examples, can be found at https://github.com/

bfpc/DualSDDP.jl.

This example comes from the Brazilian Hy-
drothermal Energy planning problem, where the
reservoirs and hydro dams are aggregated into 4
subsystems, and there is a 5th node in the net-
work, as an interconnection. Therefore, it contains
4 state variables (the stored energy in each reser-
voir), 9 equality constraints for the dynamics (4 for
the states, and 5 for demand in each node), and a
total of 164 control variables, accounting for hydro
and thermal energy produced, and energy exchange
among the nodes in the system. The uncertainty
at each time step is the inflow for each aggregated
reservoir, and is different for each time step, corre-
sponding to different months of the year.

For this example, we take 12 stages and 82 in-
flow realizations per stage (thus 8212 scenarios).
We have natural bounds for every state variable,
given by the reservoirs’ limits, and control variables
(power output, line capacities, . . . ). The risk mea-
sure considered was a combination of expectation
and AV@R, given by βE+ (1− β)AV@Rα. In this
problem, the highest marginal cost is given by load
shedding, which yields estimates for the Lipschitz
constants we use.

In Figure 1, we present the evolution of the
bounds obtained by the primal SDDP, our dual
SDDP algorithm, as well the one shot backward
bounds of [11] (Philpott UB), computed every 50
iterations based on the trajectories from primal
SDDP, and the upper and lower bounds provided
by the problem-child method of [3] (Baucke UB /
LB). This is done for various level of risk aversion.
Note that, on this problem, the dual upper bound
always outperform the problem-child method. It
also slightly beat the primal one-shot upper bound
in the most risk-averse case. This is also observed
on the other numerical experiments available at
https://github.com/bfpc/DualSDDP.jl.

Finally, we noticed that each iteration of the dual
is between 30 and 15 times slower than primal iter-
ation, being larger for higher branching sizes.

# branches P-SDDP D-SDDP Problem Child

10 0.023 0.166 0.109
20 0.054 0.523 0.224
40 0.113 2.366 0.402
80 0.274 5.739 0.813

Table 1: Single iteration time in sec (around it = 100)

This is expected, since each problem in the dual
formulation includes all inflow realizations and a
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linking constraint among all of them, whereas the
primal problem also allows decomposing each time
step in separate problems for each branch.

100 150 200 250 300

0.975

1.000

1.025

1.050

1.075

1.100

1.125

1.150
1e9 =0.1,  = 0.1

Dual UB
Philpott UB
Baucke UB
Baucke LB
SDDP LB

100 150 200 250 300
3.75

4.00

4.25

4.50

4.75

5.00

5.25

5.50

5.75 1e8 =0.3,  = 0.5

100 150 200 250 300
1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00
1e8 =0.5,  = 1.0

Model: 4d_hydro - Lipschitz factor: 1

Figure 1: Bounds evolution for hydrothermal problem.
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